Skip to main content

Create a sink connector from Apache Kafka® to Snowflake

The Apache Kafka Connect® Snowflake sink connector enables you to move data from an Aiven for Apache Kafka® cluster to a Snowflake database. The full connector documentation is available in the dedicated GitHub repository.

note

See the full set of available parameters and configuration options in the connector's documentation.

Prerequisites

  • An Aiven for Apache Kafka® service with Apache Kafka Connect enabled or a dedicated Aiven for Apache Kafka Connect cluster.

  • Prepare the Snowflake account and collect the following information about the target Snowflake database:

    • SNOWFLAKE_URL: The URL used to access the Snowflake account in the format of ACCOUNT_LOCATOR.REGION_ID.snowflakecomputing.com where:

      • ACCOUNT_LOCATOR is the name of the account, more information are available in the dedicated Snowflake documentation
      • REGION_ID is the Id of the region where the Snowflake service is available, you can review the region Ids in the dedicated documentation
      tip

      The Snowflake account Id and region name can be obtained in the Snowflake UI by issuing the following query in a worksheet:

      select current_account(), current_region()
    • SNOWFLAKE_USERNAME: A valid Snowflake username with enough privileges to write data in the target database as mentioned in the prerequisite document.

    • SNOWFLAKE_PRIVATE_KEY: The private key associated to the SNOWFLAKE_USERNAME as mentioned in the prerequisite document.

    • SNOWFLAKE_PRIVATE_KEY_PASSPHRASE: The private key passphrase

    • SNOWFLAKE_DATABASE: The target Snowflake database name

    • SNOWFLAKE_SCHEMA: The target Snowflake database schema name

    • TOPIC_LIST: The list of topics to sink divided by comma

    • APACHE_KAFKA_HOST: The hostname of the Apache Kafka service, only needed when using Avro as data format

    • SCHEMA_REGISTRY_PORT: The Apache Kafka's schema registry port, only needed when using Avro as data format

    • SCHEMA_REGISTRY_USER: The Apache Kafka's schema registry username, only needed when using Avro as data format

    • SCHEMA_REGISTRY_PASSWORD: The Apache Kafka's schema registry user password, only needed when using Avro as data format

Setup a Snowflake sink connector with Aiven Console

The following example demonstrates how to setup an Apache Kafka Connect® Snowflake sink connector using the Aiven Console.

Define an Apache Kafka Connect® configuration file

Define the connector configurations in a file (we'll refer to it with the name snowflake_sink.json) with the following content:

{
"name": "my-test-snowflake",
"connector.class": "com.snowflake.kafka.connector.SnowflakeSinkConnector",
"topics": "TOPIC_LIST",
"key.converter": "io.confluent.connect.avro.AvroConverter",
"key.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT",
"key.converter.basic.auth.credentials.source": "USER_INFO",
"key.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD",
"value.converter": "io.confluent.connect.avro.AvroConverter",
"value.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT",
"value.converter.basic.auth.credentials.source": "USER_INFO",
"value.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD",
"snowflake.url.name": "SNOWFLAKE_URL",
"snowflake.user.name": "SNOWFLAKE_USERNAME",
"snowflake.private.key": "SNOWFLAKE_PRIVATE_KEY",
"snowflake.private.key.passphrase": "SNOWFLAKE_PRIVATE_KEY_PASSPHRASE",
"snowflake.database.name": "SNOWFLAKE_DATABASE",
"snowflake.schema.name": "SNOWFLAKE_SCHEMA"
}

The configuration file contains the following entries:

  • name: The connector name
  • topics: The list of Apache Kafka® topics to sink to the Snowflake database
  • key.converter and value.converter: defines the messages data format in the Apache Kafka topic. The io.confluent.connect.avro.AvroConverter converter translates messages from the Avro format. To retrieve the messages schema we use Aiven's Karapace schema registry as specified by the schema.registry.url parameter and related credentials.
note

The key.converter and value.converter sections define how the topic messages will be parsed and needs to be included in the connector configuration.

When using Avro as source data format, set following parameters:

  • value.converter.schema.registry.url: pointing to the Aiven for Apache Kafka schema registry URL in the form of https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT with the APACHE_KAFKA_HOST and SCHEMA_REGISTRY_PORT parameters retrieved in the previous step.
  • value.converter.basic.auth.credentials.source: to the value USER_INFO, since you're going to login to the schema registry using username and password.
  • value.converter.schema.registry.basic.auth.user.info: passing the required schema registry credentials in the form of SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD with the SCHEMA_REGISTRY_USER and SCHEMA_REGISTRY_PASSWORD parameters retrieved in the previous step.
  • snowflake.url.name: The URL to access the Snowflake service
  • snowflake.user.name: The connection user
  • snowflake.private.key: The user's private key
  • snowflake.private.key.passphrase: The private key passphrase
  • snowflake.database.name: The Snowflake database name
  • snowflake.schema.name: The Snowflake schema name

Create a Kafka Connect connector with the Aiven Console

To create a Kafka Connect connector:

  1. Log in to the Aiven Console and select the Aiven for Apache Kafka® or Aiven for Apache Kafka Connect® service where the connector needs to be defined.

  2. Select Connectors from the left sidebar.

  3. Select Create New Connector, it is enabled only for services with Kafka Connect enabled.

  4. Select Snowflake Sink.

  5. In the Common tab, locate the Connector configuration text box and select on Edit.

  6. Paste the connector configuration (stored in the snowflake_sink.json file) in the form.

  7. Select Apply.

    note

    The Aiven Console parses the configuration file and fills the relevant UI fields. You can review the UI fields across the various tab and change them if necessary. The changes will be reflected in JSON format in the Connector configuration text box.

  8. After all the settings are correctly configured, select Create connector.

  9. Verify the connector status under the Connectors screen.

  10. Verify the presence of the data in the target Snowflake database.

    note

    You can also create connectors using the Aiven CLI command.

Example: Create a Snowflake sink connector on a topic in Avro format

The example creates an Snowflake sink connector with the following properties:

  • connector name: my_snowflake_sink

  • source topics: test

  • Snowflake database: testdb

  • Snowflake schema: testschema

  • Snowflake URL: XX0000.eu-central-1.snowflakecomputing.com

  • Snowflake user: testuser

  • User private key:

    XXXXXXXYYY
    ZZZZZZZZZZ
    KKKKKKKKKK
    YY
  • User private key passphrase: password123

The connector configuration is the following:

{
"name": "my_snowflake_sink",
"connector.class": "com.snowflake.kafka.connector.SnowflakeSinkConnector",
"key.converter": "io.confluent.connect.avro.AvroConverter",
"key.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT",
"key.converter.basic.auth.credentials.source": "USER_INFO",
"key.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD",
"value.converter": "io.confluent.connect.avro.AvroConverter",
"value.converter.schema.registry.url": "https://APACHE_KAFKA_HOST:SCHEMA_REGISTRY_PORT",
"value.converter.basic.auth.credentials.source": "USER_INFO",
"value.converter.schema.registry.basic.auth.user.info": "SCHEMA_REGISTRY_USER:SCHEMA_REGISTRY_PASSWORD",
"topics": "test",
"snowflake.url.name": "XX0000.eu-central-1.snowflakecomputing.com",
"snowflake.user.name": "testkafka",
"snowflake.private.key": "XXXXXXXYYYZZZZZZZZZZKKKKKKKKKKYY",
"snowflake.private.key.passphrase": "password123",
"snowflake.database.name": "testdb",
"snowflake.schema.name": "testschema"
}

Example: Create a Snowflake sink connector on a topic with a JSON schema

If you have a topic named iot_measurements containing the following data in JSON format, with a defined JSON schema:

{
"schema": {
"type":"struct",
"fields":[{
"type":"int64",
"optional": false,
"field": "iot_id"
},{
"type":"string",
"optional": false,
"field": "metric"
},{
"type":"int32",
"optional": false,
"field": "measurement"
}]
},
"payload":{ "iot_id":1, "metric":"Temperature", "measurement":14}
}
{
"schema": {
"type":"struct",
"fields":[{
"type":"int64",
"optional": false,
"field": "iot_id"
},{
"type":"string",
"optional": false,
"field": "metric"
},{
"type":"int32",
"optional": false,
"field": "measurement"
}]
},
"payload":{"iot_id":2, "metric":"Humidity", "measurement":60}
}
note

Since the JSON schema needs to be defined in every message, there is a big overhead to transmit the information. To achieve a better performance in term of information-message ratio you should use the Avro format together with the Karapace schema registry provided by Aiven

You can sink the iot_measurements topic to Snowflake with the following connector configuration, after replacing the placeholders for SNOWFLAKE_URL, SNOWFLAKE_USERNAME, SNOWFLAKE_PRIVATE_KEY, SNOWFLAKE_PRIVATE_KEY_PASSPHRASE, SNOWFLAKE_DATABASE and SNOWFLAKE_SCHEMA:

{
"name": "my-test-snowflake-1",
"connector.class": "com.snowflake.kafka.connector.SnowflakeSinkConnector",
"value.converter": "org.apache.kafka.connect.json.JsonConverter",
"topics": "iot_measurements",
"snowflake.url.name": "SNOWFLAKE_URL",
"snowflake.user.name": "SNOWFLAKE_USERNAME",
"snowflake.private.key": "SNOWFLAKE_PRIVATE_KEY",
"snowflake.private.key.passphrase": "SNOWFLAKE_PRIVATE_KEY_PASSPHRASE",
"snowflake.database.name": "SNOWFLAKE_DATABASE",
"snowflake.schema.name": "SNOWFLAKE_SCHEMA"
}

The configuration file contains the following peculiarities:

  • "topics": "iot_measurements": setting the topic to sink
  • "value.converter": "org.apache.kafka.connect.json.JsonConverter": the message value is in JSON format with a schema, there is not key converter defined for the key since it's empty