Skip to main content

Connect Apache Kafka® to Aiven for ClickHouse®

You can integrate Aiven for ClickHouse® with either Aiven for Apache Kafka® service located in the same project, or an external Apache Kafka endpoint.

tip

To deliver data from Apache Kafka® topics to a ClickHouse database for efficient querying and analysis, create a ClickHouse sink connector.

A single Aiven for ClickHouse instance can connect to multiple Kafka clusters with different authentication mechanism and credentials.

Behind the scenes the integration between Aiven for ClickHouse and Apache Kafka services relies on ClickHouse Kafka Engine.

note

Aiven for ClickHouse service integrations are available for Startup plans and higher.

Prerequisites

  • Aiven for ClickHouse service

  • Aiven for Apache Kafka service or a self-hosted Apache Kafka service

    tip

    If you use the self-hosted Apache Kafka service, an external Apache Kafka endpoint should be configured in Integration endpoints.

  • At least one topic in the Apache Kafka service

Variables

The following variables will be used later in the code snippets:

VariableDescription
CLICKHOUSE_SERVICE_NAMEName of your Aiven for ClickHouse service.
KAFKA_SERVICE_NAMEName of the Apache Kafka service you use for the integration.
PROJECTName of Aiven project where your services are located.
CONNECTOR_TABLE_NAMEName of the Kafka engine virtual table that is used as a connector.
DATA_FORMATInput/output data format in which data is accepted into Aiven for ClickHouse. See Reference.
CONSUMER_GROUP_NAMEName of the consumer group. Each message is delivered once per consumer group.

Create an integration

To connect Aiven for ClickHouse and Aiven for Apache Kafka by enabling a data service integration, see Create data service integrations.

The newly created database name has the following format: service_KAFKA_SERVICE_NAME, where KAFKA_SERVICE_NAME is the name of your Apache Kafka service.

note

During this step we only created an empty database in Aiven for ClickHouse, but we didn't create any tables yet. Creation of the virtual connector table is done by setting specific integration configuration, see the section below.

Update Apache Kafka integration settings

Configure the topic and data format options for the integration. This will create a virtual table in Aiven for ClickHouse that can receive and send messages from multiple topics. You can have as many of such tables as you need.

Mandatory settings

For each table, define the following:

  • name - name of the connector table
  • columns - array of columns, with names and types
  • topics - array of topics, where to bring the data from
  • data_format - your preferred format for data input, see Formats for ClickHouse®-Kafka® data exchange
  • group_name - consumer group name, that will be created on your behalf
{
"tables": [
{
"name": "CONNECTOR_TABLE_NAME",
"columns": [
{"name": "id", "type": "UInt64"},
{"name": "name", "type": "String"}
],
"topics": [{"name": "topic1"}, {"name": "topic2"}],
"data_format": "DATA_FORMAT",
"group_name": "CONSUMER_NAME"
}
]
}

Optional settings

For each table, you can define the following optional settings:

NameDescriptionDefaultAllowed valuesMinimumMaximum value
auto_offset_resetAction to take when there is no initial offset in the offset store or the desired offset is out of rangeearliestsmallest, earliest, beginning, largest, latest, end----
date_time_input_formatMethod to read DateTime from text input formatsbasicbasic, best_effort, best_effort_us----
handle_error_modeMethod to handle errors for the Kafka enginedefaultdefault, stream----
max_block_sizeNumber of rows collected by a poll for flushing data from Kafka00 - 1_000_000_00001_000_000_000
max_rows_per_messageMaximum number of rows produced in one Kafka message for row-based formats11 - 1_000_000_00011_000_000_000
num_consumersNumber of consumers per table per replica11 - 10110
poll_max_batch_sizeMaximum amount of messages to be polled in a single Kafka poll00 - 1_000_000_00001_000_000_000
skip_broken_messagesMinimum number of broken messages from Kafka topic per block to be skipped00 - 1_000_000_00001_000_000_000
JSON format
{
"tables": [
{
"name": "CONNECTOR_TABLE_NAME",
"columns": [
{"name": "id", "type": "UInt64"},
{"name": "name", "type": "String"}
],
"topics": [{"name": "topic1"}, {"name": "topic2"}],
"data_format": "DATA_FORMAT",
"group_name": "CONSUMER_NAME",
"auto_offset_reset": "earliest"
}
]
}

Configure integration with CLI

Currently the configurations can be set only with the help of CLI command avn service integration-update:

  1. Get the service integration id by requesting the full list of integrations. Replace PROJECT, CLICKHOUSE_SERVICE_NAME and KAFKA_SERVICE_NAME with the names of your services:

    avn service integration-list                      \
    --project PROJECT_NAME \
    CLICKHOUSE_SERVICE_NAME | grep KAFKA_SERVICE_NAME
  2. Update the configuration settings using the service integration id retrieved in the previous step and your integration settings. Replace SERVICE_INTEGRATION_ID, CONNECTOR_TABLE_NAME, DATA_FORMAT and CONSUMER_NAME with your values:

    avn service integration-update SERVICE_INTEGRATION_ID \
    --project PROJECT_NAME \
    --user-config-json '{
    "tables": [
    {
    "name": "CONNECTOR_TABLE_NAME",
    "columns": [
    {"name": "id", "type": "UInt64"},
    {"name": "name", "type": "String"}
    ],
    "topics": [{"name": "topic1"}, {"name": "topic2"}],
    "data_format": "DATA_FORMAT",
    "group_name": "CONSUMER_NAME"
    }
    ]
    }'

Read and store data

In Aiven for ClickHouse you can consume messages by running SELECT command. Replace KAFKA_SERVICE_NAME and CONNECTOR_TABLE_NAME with your values and run:

SELECT * FROM service_KAFKA_SERVICE_NAME.CONNECTOR_TABLE_NAME

However, the messages are only read once (per consumer group). If you want to store the messages for later, you can send them into a separate ClickHouse table with the help of a materialized view.

For example, run to creating a destination table:

CREATE TABLE destination (id UInt64, name String)
ENGINE = ReplicatedMergeTree()
ORDER BY id;

Add a materialised view to bring the data from the connector:

CREATE MATERIALIZED VIEW materialised_view TO destination AS
SELECT *
FROM service_KAFKA_SERVICE_NAME.CONNECTOR_TABLE_NAME;

Now the messages consumed from the Apache Kafka topic will be read automatically and sent into the destination table directly.

For more information on materialized views, see Create materialized views in ClickHouse®.

note

ClickHouse is strict about allowed symbols in database and table names. You can use backticks around the names when running ClickHouse requests, particularly in the cases when the name contains dashes.

Write data back to the topic

You can also bring the entries from ClickHouse table into the Apache Kafka topic. Replace KAFKA_SERVICE_NAME and CONNECTOR_TABLE_NAME with your values:

INSERT INTO service_KAFKA_SERVICE_NAME.CONNECTOR_TABLE_NAME(id, name)
VALUES (1, 'Michelangelo')
warning

Writing to more than one topic is not supported.

Reference

When connecting ClickHouse® to Kafka® using Aiven integrations, data exchange requires using specific formats. Check the supported formats for input and output data in Formats for ClickHouse®-Kafka® data exchange.